Ask Learn
Preview
Please sign in to use this experience.
Sign inThis browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
SQL Server 2005 encrypts data with a hierarchical encryption and key management infrastructure. Each layer encrypts the layer below it by using a combination of certificates, asymmetric keys, and symmetric keys. As shown in the following illustration, the encryption hierarchy is parallel to the hierarchy of securable objects that are described in Permissions Hierarchy.
The following illustration shows that each layer of the encryption hierarchy encrypts the layer beneath it. The top layer, the Service Master Key, is encrypted with the Windows DP API.
SQL Server 2005 provides the following mechanisms for encryption:
A public key certificate, usually just called a certificate, is a digitally-signed statement that binds the value of a public key to the identity of the person, device, or service that holds the corresponding private key. Certificates are issued and signed by a certification authority (CA). The entity that receives a certificate from a CA is the subject of that certificate. Typically, certificates contain the following information.
A primary benefit of certificates is that they relieve hosts of the need to maintain a set of passwords for individual subjects. Instead, the host merely establishes trust in a certificate issuer, which may then sign an unlimited number of certificates.
When a host, such as a secure Web server, designates an issuer as a trusted root authority, the host implicitly trusts the policies that the issuer has used to establish the bindings of certificates it issues. In effect, the host trusts that the issuer has verified the identity of the certificate subject. A host designates an issuer as a trusted root authority by putting the self-signed certificate of the issuer, which contains the public key of the issuer, into the trusted root certification authority certificate store of the host computer. Intermediate or subordinate certification authorities are trusted only if they have a valid certification path from a trusted root certification authority.
The issuer can revoke a certificate before it expires. Revocation cancels the binding of a public key to an identity that is asserted in the certificate. Each issuer maintains a certificate revocation list that can be used by programs when they are checking the validity of any given certificate.
The self-signed certificates created by SQL Server follow the X.509 standard and support the X.509 v1 fields.
An asymmetric key is made up of a private key and the corresponding public key. Each key can decrypt data encrypted by the other. Asymmetric encryption and decryption are relatively resource-intensive, but they provide a higher level of security than symmetric encryption. An asymmetric key can be used to encrypt a symmetric key for storage in a database.
A symmetric key is one key that is used for both encryption and decryption. Encryption and decryption by using a symmetric key is fast, and suitable for routine use with sensitive data in the database.
Permissions Hierarchy
Securables
Please sign in to use this experience.
Sign in