Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
In this article
This class automates taking a lock for synchronizing access to an object from several threads. When constructed it acquires the lock and when destroyed it releases the lock.
ref class lock;
lock
is available only for CLR objects and can only be used in CLR code.
Internally, the lock class uses Monitor to synchronize access. For more information, see the referenced article.
Name | Description |
---|---|
lock::lock | Constructs a lock object, optionally waiting to acquire the lock forever, for a specified amount of time, or not at all. |
lock::~lock | Destructs a lock object. |
Name | Description |
---|---|
lock::acquire | Acquires a lock on an object, optionally waiting to acquire the lock forever, for a specified amount of time, or not at all. |
lock::is_locked | Indicates whether a lock is being held. |
lock::release | Releases a lock. |
lock::try_acquire | Acquires a lock on an object, waiting for a specified amount of time and returning a bool to report the success of acquisition instead of throwing an exception. |
Name | Description |
---|---|
lock::operator bool | Operator for using lock in a conditional expression. |
lock::operator== | Equality operator. |
lock::operator!= | Inequality operator. |
Header file <msclr\lock.h>
Namespace msclr
Constructs a lock
object, optionally waiting to acquire the lock forever, for a specified amount of time, or not at all.
template<class T> lock(
T ^ _object
);
template<class T> lock(
T ^ _object,
int _timeout
);
template<class T> lock(
T ^ _object,
System::TimeSpan _timeout
);
template<class T> lock(
T ^ _object,
lock_later
);
_object
The object to be locked.
_timeout
Time out value in milliseconds or as a TimeSpan.
Throws ApplicationException if lock acquisition doesn't occur before timeout.
The first three forms of the constructor try to acquire a lock on _object
within the specified timeout period (or Infinite if none is specified).
The fourth form of the constructor doesn't acquire a lock on _object
. lock_later
is a member of the lock_when enum. Use lock::acquire or lock::try_acquire to acquire the lock in this case.
The lock will automatically be released when the destructor is called.
_object
can't be ReaderWriterLock. If it is, a compiler error will result.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application then waits to exit until all worker threads have completed their tasks.
// msl_lock_lock.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
if (l.try_acquire(50)) { // try to acquire lock, don't throw an exception if can't
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Destructs a lock
object.
~lock();
The destructor calls lock::release.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application then waits to exit until all worker threads have completed their tasks.
// msl_lock_dtor.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
if (l.try_acquire(50)) { // try to acquire lock, don't throw an exception if can't
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Acquires a lock on an object, optionally waiting to acquire the lock forever, for a specified amount of time, or not at all.
void acquire();
void acquire(
int _timeout
);
void acquire(
System::TimeSpan _timeout
);
_timeout
Timeout value in milliseconds or as a TimeSpan.
Throws ApplicationException if lock acquisition doesn't occur before timeout.
If a timeout value isn't supplied, the default timeout is Infinite.
If a lock has already been acquired, this function does nothing.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application then waits to exit until all worker threads have completed their tasks.
// msl_lock_acquire.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
if (l.try_acquire(50)) { // try to acquire lock, don't throw an exception if can't
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Indicates whether a lock is being held.
bool is_locked();
true
if a lock is held, false
otherwise.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist, and waits to exit until all worker threads have completed their tasks.
// msl_lock_is_locked.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
l.try_acquire(50); // try to acquire lock, don't throw an exception if can't
if (l.is_locked()) { // check if we got the lock
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Operator for using lock
in a conditional expression.
operator bool();
true
if a lock is held, false
otherwise.
This operator actually converts to _detail_class::_safe_bool
which is safer than bool
because it can't be converted to an integral type.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application waits to exit until all worker threads have completed their tasks.
// msl_lock_op_bool.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
l.try_acquire(50); // try to acquire lock, don't throw an exception if can't
if (l) { // use bool operator to check for lock
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Releases a lock.
void release();
If no lock is being held, release
does nothing.
You don't have to call this function explicitly. When a lock
object goes out of scope, its destructor calls release
.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application then waits to exit until all worker threads have completed their tasks.
// msl_lock_release.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
if (l.try_acquire(50)) { // try to acquire lock, don't throw an exception if can't
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Acquires a lock on an object, waiting for a specified amount of time and returning a bool
to report the success of acquisition instead of throwing an exception.
bool try_acquire(
int _timeout_ms
);
bool try_acquire(
System::TimeSpan _timeout
);
_timeout
Timeout value in milliseconds or as a TimeSpan.
true
if lock was acquired, false
otherwise.
If a lock has already been acquired, this function does nothing.
This example uses a single instance of a class across several threads. The class uses a lock on itself to make sure that accesses to its internal data are consistent for each thread. The main application thread uses a lock on the same instance of the class to periodically check to see if any worker threads still exist. The main application then waits to exit until all worker threads have completed their tasks.
// msl_lock_try_acquire.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
ref class CounterClass {
private:
int Counter;
public:
property int ThreadCount;
// function called by multiple threads, use lock to keep Counter consistent
// for each thread
void UseCounter() {
try {
lock l(this); // wait infinitely
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
for (int i = 0; i < 10; i++) {
Counter++;
Thread::Sleep(10);
}
Console::WriteLine("In thread {0}, Counter = {1}", Thread::CurrentThread->ManagedThreadId,
Counter);
Counter = 0;
// lock is automatically released when it goes out of scope and its destructor is called
}
catch (...) {
Console::WriteLine("Couldn't acquire lock!");
}
ThreadCount--;
}
};
int main() {
// create a few threads to contend for access to the shared data
CounterClass^ cc = gcnew CounterClass;
array<Thread^>^ tarr = gcnew array<Thread^>(5);
ThreadStart^ startDelegate = gcnew ThreadStart(cc, &CounterClass::UseCounter);
for (int i = 0; i < tarr->Length; i++) {
tarr[i] = gcnew Thread(startDelegate);
cc->ThreadCount++;
tarr[i]->Start();
}
// keep our main thread alive until all worker threads have completed
lock l(cc, lock_later); // don't lock now, just create the object
while (true) {
if (l.try_acquire(50)) { // try to acquire lock, don't throw an exception if can't
if (0 == cc->ThreadCount) {
Console::WriteLine("All threads completed.");
break; // all threads are gone, exit while
}
else {
Console::WriteLine("{0} threads exist, continue waiting...", cc->ThreadCount);
l.release(); // some threads exist, let them do their work
}
}
}
}
In thread 3, Counter = 0
In thread 3, Counter = 10
In thread 5, Counter = 0
In thread 5, Counter = 10
In thread 7, Counter = 0
In thread 7, Counter = 10
In thread 4, Counter = 0
In thread 4, Counter = 10
In thread 6, Counter = 0
In thread 6, Counter = 10
All threads completed.
Equality operator.
template<class T> bool operator==(
T t
);
t
The object to compare for equality.
Returns true
if t
is the same as the lock's object, false
otherwise.
// msl_lock_op_eq.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
int main () {
Object^ o1 = gcnew Object;
lock l1(o1);
if (l1 == o1) {
Console::WriteLine("Equal!");
}
}
Equal!
Inequality operator.
template<class T> bool operator!=(
T t
);
t
The object to compare for inequality.
Returns true
if t
differs from the lock's object, false
otherwise.
// msl_lock_op_ineq.cpp
// compile with: /clr
#include <msclr/lock.h>
using namespace System;
using namespace System::Threading;
using namespace msclr;
int main () {
Object^ o1 = gcnew Object;
Object^ o2 = gcnew Object;
lock l1(o1);
if (l1 != o2) {
Console::WriteLine("Inequal!");
}
}
Inequal!